
                                                                                                                                                              
 

GenTORE – GA n° 727213 
D4.3 – Paper on genomic prediction of efficiency in multiple admixed breeds 

 

 
 

GenTORE 

Genomic management Tools to Optimise Resilience 
and Efficiency 

 

Grant agreement n°: 727213  

 

H2020 - Research and Innovation Action  

 

D4.3 

Genomic prediction of efficiency in multiple 
admixed breeds 

 

Due date: M48 

 

Actual submission date: M48 

 

Project start date: 1st June 2017  Duration: 60 months 

 

Workpackage concerned: WP4 

 

Concerned workpackage leader: Mogens Sandø Lund 

 

Lead Beneficiary: DLO 

 

Dissemination level:    

 PU: Public (must be available on the website) 

 CO: Confidential, only for members of the consortium (including the Commission 
Services) 

 Cl: Classified, as referred to in Commission Decision 2001/844/EC  

  

 
 
 
 



                                                                                                                                                              
 

GenTORE – GA n° 727213 
D4.3 – Paper on genomic prediction of efficiency in multiple admixed breeds 

 

 
 
Table of content 
 
1. Summary ........................................................................................................................ 3 
2. Introduction .................................................................................................................... 3 
3. Results ........................................................................................................................... 3 
4. Conclusions .................................................................................................................... 3 
5. Partners involved in the work ......................................................................................... 4 
6. Annexes ......................................................................................................................... 4 
 
 



                                                                                                                                                              
 

GenTORE – GA n° 727213 
D4.3 – Paper on genomic prediction of efficiency in multiple admixed breeds 

 

1. Summary  

An analysis protocol, based on readily available BLUP software packages, has been 
developed to allow for heterogeneous SNP (co)variances in genomic genotype by 
environment interaction models. The developed approach has been applied to the 
efficiency trait age at slaughter, an indirect measure of growth efficiency, of Irish dairy 
and beef crossbred animals. This deliverable reports genetic parameters for age at 
slaughter and the accuracy of genomic prediction reaction norm models for this trait. 
As a next step, the proposed models will be tested in dual purpose Fleckvieh cattle by 
GenTORE partner LfL (Germany) within Task 4.2.  
 

2. Introduction 
 
The reduction of the number of days from birth until the target weight at slaughter is 
reached, represents a sustainable option to increase efficiency of beef cattle 
production on animal and herd level as well as reduce the environmental impact. In the 
presence of genotype by environment interaction (GxE) selection of efficient and 
resilient animals is important. In this deliverable, we have developed genomic GxE 
models to allow for heterogeneous SNP (co)variances across the genome based on 
readily available BLUP software packages. Applications in simulated data have shown 
a slight increase of accuracy of genomic breeding values (GEBV) with heterogeneous 
compared to homogeneous SNP (co)variances. The new approach was applied in 
genomic prediction GxE analysis for the efficiency trait age at slaughter in an Irish dairy 
and beef crossbred cattle population. This deliverable evaluated the extent of GxE for 
age at slaughter and compared the accuracies of a genomic reaction norm model for 
age at slaughter, modelling either homogeneous or heterogeneous SNP (co)variances 
across the genome. 

 

3. Results 

Results of the developed methods applied to the efficiency trait age at slaughter in an 
Irish dairy and beef crossbred cattle population are presented in the Annex. The report 
is written in the format to be submitted to a peer-reviewed journal.  
 

4. Conclusions 

The genetic analysis of age at slaughter in an Irish dairy and beef crossbred population 
reveals large genetic variation for this trait. Genomic reaction norm models resulted in 
higher accuracies for young selection candidates compared to the expected accuracy 
of parent average breeding values without genomic information. The use of genomic 
information for age at slaughter will be beneficial to increase efficiency and reduce 
environmental impact of beef cattle production. Results show the existence of GxE for 
age at slaughter to some extent. Unlike results based on simulated data, the genomic 
reaction norm model allowing for heterogeneous SNP (co)variances did not increase 
the accuracy of genomic breeding values for age at slaughter.  
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5. Partners involved in the work 
 
DLO (NL), TEAGASC (Ireland) 

6. Annexes 
Annex 1: Accuracy of genomic reaction norm model for age at slaughter in an Irish dairy and 
beef crossbreed population 
Annex 2: presentation from EAAP 2020 
Annex 3: presentation from Interbull Meeting 2021 
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Introduction 
 

Efficiency and environmental impact of livestock productions system is of increasing 

importance. To increase efficiency and reduce the environmental footprint of animal production 

systems, management, but also breeding strategies (e.g. Neeteson et al., 2013; Veerkamp et 

al., 2013) have been proposed. Breeding strategies to increase efficiency and reduce the 

environmental impact can focus on the selection of direct (e.g. feed efficiency or methane 

emission) or indirect traits. In beef cattle, breeding for reduced number of days from birth until 

the target carcass weight at slaughter is reached, could be a sustainable option to increase 

efficiency on animal and herd level and reduce environmental impact. Berry et al. (2017) have 

investigated the potential of genetic selection for a younger age at slaughter, exploiting large 

amount of both phenotypic and genetic variation for this trait. 

In the presence of genotype by environment interaction (GxE), selection of efficient and 

resilient animals is important. GxE is typically modelled by a multi-trait approach, where the 

same trait measured in different discrete environments is considered as a different, but 

genetically correlated trait (e.g. Falconer, 1952). Alternatively, GxE can be modelled with 

reaction norm models (Kolmodin et al., 2002; Calus and Veerkamp, 2003), where the breeding 

values are modelled as a function of the environment defined as a continuous variable. Both 

approaches can be implemented as genomic prediction models by replacing the pedigree 

based relationship matrix by the genomic relationship matrix. A variety of studies show the 

advantage of genomic GxE models, e.g. genomic reaction norm models, resulting in higher 

accuracy of genomic breeding values (GEBV) (Silva et al. 2014, Mota et al., 2020). In addition, 

specific SNP-by-environment interaction can be studied (e.g Carvalheiro et al., 2019; Zhang 

et al., 2019) and GEBV of non-phenotyped animals can be estimated for different 

Annex 1



                                                                                                                                                              
 

GenTORE – GA n° 727213 
D4.3 – Paper on genomic prediction of efficiency in multiple admixed breeds 

 

environments. Both, genomic multi-trait models or reaction norm models, implicitly assume the 

same (co)variance matrix for every SNP. Since certain regions in the genome may contain 

QTL, the assumption of equal (co)variances across the genome may be violated. In genomic 

prediction models without considering GxE, this assumption can be relaxed by the 

implementation of a Bayesian variable selection model (de los Campos et al., 2013). However, 

to our knowledge no implementation of a Bayesian genomic prediction reaction norm model 

using variable selection to differentiate SNP (co)variances across the genome is described in 

literature. Once SNP-specific variances are obtained (e.g. from a Bayesian model), it has been 

shown for univariate models that these can be used in a ridge regression BLUP (or SNP-BLUP) 

model to obtain breeding values that are equivalent to those from the full Bayesian model 

(Calus et al., 2014). This allows to compute GEBV using standard BLUP software currently 

used for large scale routine genomic evaluations, but still requires currently not available 

software to estimate the heterogeneous SNP (co-)variances, which may be computationally 

very demanding. 

Wang et al. (2012) described the single-step GWAS approach as an alternative, which involves 

the computation of BLUP solutions for each SNP followed by derivation of SNP variances from 

those BLUP solutions for each SNP. Every next iteration uses the SNP-specific variances from 

the previous iteration, where in the first iteration equal variances are assumed for all SNP. The 

limitations of this approach are that SNP variances may become very large (Garcia et al., 2018) 

and that there is no formal criteria to determine convergence of the estimated variance 

components.  

To overcome the limitations described above, we have developed an alternative approach to 

allow for heterogeneous SNP (co)variances in genomic GxE models that can be implemented 

using standard BLUP software currently used for large scale routine genomic evaluations. The 

approach has been tested in simulated data resulting in slightly higher accuracies of GEBV 

estimated with both, genomic multi-trait and reaction norm models (Gredler-Grandl and Calus, 

2020; Gredler-Grandl and Calus, 2021). The objective of this study was to apply this approach 

in genomic GxE analysis for age at slaughter in an Irish dairy and beef crossbred cattle 

population. We evaluated the extent of GxE for age at slaughter and compared the accuracies 

of genomic reaction norm model for age at slaughter, modelling either homogeneous or 

heterogeneous SNP (co)variances across the genome.  

 

 

 

Material and methods 

Annex 1
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Phenotype data 

 

Phenotypic data consisted of a pre-edited data set of 2,845,504 individual records for age at 

slaughter of an Irish crossbreed dairy and beef cattle population. The corresponding pedigree 

file comprised 20,236,559 animals. Slaughter records were provided for 700,894 bulls, 

1,255,825 steers and 888,785 heifers. The animals were born between the years 2000 and 

2018 and were kept in 31,869 herds. The data set consisted of dairy and beef purebred and 

crossbred animals. The number of purebred animals per breed (i.e. animals with a gene 

proportion of 100% of the corresponding breed determined by pedigree information) is as 

follows: Holstein (n=268,255), Limousine (n=13,644), Charolais (n=12,104), Simmental 

(n=3,607), Aberdeen Angus (n=2,471), Saler (n=1,916), Aubrac (n=1,583), Hereford 

(n=1,358), Shorthorn (n=562), Blonde d’Aquitaine (n=482), Parthenaise (n=148), Jersey 

(n=55), and Belgian Blue (n=31). The remaining animals were classified as crossbred animals. 

All pre-editing steps are described in detail by Berry et al. (2017). Briefly, the main editing 

criteria were: only animals with known sire and dam were used; at least 5 animals per 

contemporary group (CG), carcass weight within the range of ≥ 100 kg and ≤800 kg, age at 

slaughter ≥12 months and ≤36 months. Animals of the same gender and similar age purchased 

into the same herd in close period of time (within 10 d of each other) were assigned to the 

same CG. This resulted in 260,547 CG with an average number of 10.92 animals per CG (SD 

= 9.66, min = 5, max = 257). 

 

Genotype data 

Genotypes of 51,924 animals were available. The genotypes were imputed to a high density 

(HD) SNP chip level of 734,159 autosomal SNP. The given genotypes were a subset of a data 

set described by Twomey et al. (2019), where genotypes were available from six different 

genotyping panels ranging from 17,137 SNP (International Dairy and Beef version 1 SNP chip) 

up to 777,962 SNP (Illumina bovine High-Density BeadChip). The imputation to HD was 

carried out with the software FImpute2 (Sargolzaei et al., 2014) following a two-step approach 

described in detail by Twomey et al. (2019). First, all animals genotyped with a low-density 

SNP chip panel were imputed to the Bovine SNP50 density (50k) and in a second step all 50k 

genotypes were imputed to HD level based on a multi-breed reference population.  

For further analyses in this study, SNP genotypes with MAF <0.005 were discarded resulting 

in a final set of 662,011 SNP. Three pairs of identical twins have been identified in the 

genotyped data set, where one twin has been randomly removed. 29,558 genotyped animals 

Annex 1
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had phenotypes for age at slaughter. The minimum required number of genotyped animals per 

CG was set to three, leaving 14,665 genotyped and phenotyped animals. The genotyped 

animals in the final data set were born between the years 2009 and 2016, kept in 2,041 herds 

and assigned to 3,146 CG. The final data set included purebred animals of Holstein (n=1,909), 

Limousine (n=202), Charolais (n=157), Aberdeen Angus (n=21), Belgian Blue (n=1), Hereford 

(n=23), Simmental (n=20), Saler (n=13), Aubrac (n=2), Blonde d’Aquitaine (n=4), and 

Parthenaise (n=3). To infer population structure a Principal Component Analysis implemented 

in calc_grm (Calus and Vandenplas, 2016) has been carried out on the genomic relationship 

matrix . 

 

Model 

To allow for heterogeneous SNP (co)variances across the genome in genomic GxE models a 

protocol consisting of several steps has been developed. Initially, the data set of interest is 

split in two subsets, similar to an approach where data is split into a subset for QTL discovery, 

and a subset where those QTL are used to upweight the contribution of those SNP to the 

explained variance (Moghaddar et al. 2019). Subset 1 is used to estimate SNP effects �̂� using 

a model that assumes equal (co)variances for all SNP. This model could be a genomic 

relationship matrix based REML (GREML) analysis followed by backsolving of �̂�, or a random 

regression on SNP genotypes. SNP specific variances are then computed as 2𝑝𝑘(1 − 𝑝𝑘)�̂�𝑘
2. 

For multivariate models SNP specific covariances between traits i and j can equivalently be 

computed as 2𝑝𝑘(1 − 𝑝𝑘)�̂�𝑘𝑖
�̂�𝑘𝑗

, where �̂�𝑖𝑘
(�̂�𝑗𝑘

) is the estimated effect for SNP k for trait i (j). 

The same principle can be applied for reaction norm models, where SNP specific covariances 

between coefficients (intercept (0), slope (1), etc.) i and j can be computed as 2𝑝𝑘(1 −

𝑝𝑘)�̂�𝑘𝑖
�̂�𝑘𝑗

, where �̂�𝑘𝑖
(�̂�𝑘𝑗

) is the estimated effect for SNP k for coefficient i (j). The model 

applied to subset 1 then considers these SNP specific variances as weights to compute a 

weighted SNP (co)variance matrix. In the following, the steps of the analysis protocol are 

described in detail applied to the crossbred dairy and beef cattle data set described above. A 

genomic reaction norm model allowing for heterogeneous SNP (co)variances across the 

genome (HET) was compared to a model with homogeneous SNP (co)variances (HOM). 

 

 

Estimation of Contemporary group effects 

Annex 1
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Estimated contemporary group effects were used as continuous environmental descriptor in 

the reaction norm model. The CG effects for age at slaughter were estimated in a univariate 

BLUP analysis with the MiXBLUP software package (ten Napel et al., 2020): 

 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐞 

Where 𝐲 is the vector of phenotypic observations for age at slaughter in days; 𝐛 is the vector 

of fixed effects; 𝑎 is the vector of additive genetic effects, which are assumed to follow a normal 

distribution with 𝑁(0, 𝐀𝜎𝑎
2 ), where 𝐀 is the pedigree based relationship matrix and 𝜎𝑎

2 is the 

additive genetic variance; 𝐞 is a vector for the random residual, which is assumed to follow a 

normal distribution with 𝑁(0, 𝐈𝜎𝑒
2 ), where 𝐈 is the identity matrix and 𝜎𝑒

2 is the variance of the 

random residual. 𝐗 and 𝐙 are incidence matrices relating the observations to the fixed and 

random effects in the model. The fixed effects included in the model were CG, the interactions 

between gender (bull, steer, or heifer) and carcass weight and gender and carcass fat, parity 

of the dam (classes 1 to 4, and 5+), herd source, which is whether the animal was born in a 

beef or dairy herd, class effects of the general heterosis coefficient and recombination loss. 

Classes for heterosis were: 0%, >0% and ≤10%, >10% and ≤20%, >20% and ≤30%, >30% 

and ≤40%, >40% and ≤50%, >50% and ≤60%, >60% and ≤70%, >70% and ≤80%, >80% and 

≤90%, >90 and <100% and 100%. Recombination loss classes were 0%, >0% and ≤5%, >5% 

and ≤10%, >10% and ≤15%, >15 and ≤20%, >20% and ≤25%, >25% and ≤30%, >30% and 

≤35%, >35% and ≤40%, >40% and ≤45%, >45% and <50% and 50%. The additive genetic 

and residual variances used in the BLUP analysis for age at slaughter were 471.9 d and 

875.905 d, respectively (A. Twomey, personal communication, December 11, 2020). YD for 

age at slaughter for each animal were calculated as the sum of the estimated breeding value 

and the residual term estimated with MiXBLUP. For further analyses, CG effects were 

standardized to have a mean of 0 and sd of 1. Descriptive statistics for YD, original and 

standardized CG effects are reported in Table 1. The frequency distribution of CG is shown in 

Figure 1.  

 

Assigning animals to subsets 

To assign the animals to subsets 1 and 2 a K-means clustering approach (Saatchi et al., 2011) 

has been applied to a genomic relationship matrix of the herds. First, average genotypes per 

herd for each SNP were calculated. Using calc_grm (Calus and Vandenplas, 2016) the 

genomic relationship matrix of the herds was computed based on the first method of VanRaden 

(2008) as 𝐆𝐡𝐞𝐫𝐝𝐬 =
𝐙𝐙′

2 ∑ 𝑝𝑘(1−𝑝𝑘)
 , where 𝐆𝐡𝐞𝐫𝐝𝐬   is the genomic relationship matrix, 𝒁 is the 
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incidence matrix containing average genotypes for all herds for all SNP and 𝑝𝑘 is the allele 

frequency of SNP k in the genotyped animals. A dissimilarity matrix between all herds was 

calculated based on elements of the genomic relationship matrix as follows: 

𝑑𝑖𝑗 = 1 −  
𝑔𝑖𝑗

√𝑔𝑖𝑖 ∗  𝑔𝑗𝑗

 

where 𝑑𝑖𝑗 is a measure of genomic distance between herd i and herd j, 𝑔𝑖𝑗 is the genomic 

relationship between herd i and herd j, 𝑔𝑖𝑖 and 𝑔𝑗𝑗 are diagonal elements of the matrix 𝐆𝐡𝐞𝐫𝐝𝐬 

representing the genomic relationship coefficient of herd i (j) with itself. For the K-means 

clustering the companion program kmeanscluster of calc_grm (Calus and Vandenplas, 2016) 

has been used. The number of iterations and the number of clusters were set to 20 and 12, 

respectively. Ideally, each major breed is associated with at least two clusters, such that one 

cluster could be used in subset 1 and one for subset 2. We have set the number of clusters to 

12 to ensure that all main breeds are represented at least by three clusters. For subset 1 four 

clusters (clusters 1, 2, 6, and 8, Table 2) comprising a large number animals representing the 

main breeds (Holstein, Limousine, Charolais and Angus) with highest importance for cross 

breeding have been chosen. The remaining eight clusters (0, 3, 4, 5, 7, 9, 10, and 11) were 

used in subset 2. The number of animals in subsets 1 and 2 were 5,326 and 9,342, 

respectively. Due to small sample size and similar breed composition (Holstein and Aberdeen 

Angus) clusters 9 and 10 were combined resulting in total seven clusters for subset 2. In subset 

2 a seven-fold cross validation has been applied, where each cluster has been used as 

validation set once for genomic prediction.  

 

Analysis subset 1 

Genomic reaction norm model 

A univariate genomic reaction norm model has been applied to age at slaughter following Ni 

et al. (2019) and Chung et al. (2020) in subset 1 using the software package mtg2 (Lee et al., 

2016): 

 

 

𝐲 = 𝟏𝜇 +  𝛃𝟎 +  𝐐𝛃𝟏 + 𝐞 

where 𝐲 is the vector of YD for age at slaughter for all animals, 𝜇 is an overall mean, 𝛃𝟎 and 

𝛃𝟏 are the vectors of intercept and second order of regression coefficients for the random 

genetic effects, 𝟏 is a vector of ones, 𝑸 is a (diagonal) incidence matrix storing the squared 

estimated CG effects describing the environment for each animal, and 𝒆 is the vector of random 
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residuals. It is assumed that [
𝛃𝟎

𝛃𝟏
] ~ 𝑁 ([

𝟎
𝟎

] , 𝐆𝐕𝐑 [
𝜎𝛽0

2 𝜎𝛽0𝛽1

𝜎𝛽0𝛽1 𝜎𝛽1
2 ]), where 𝐆𝐕𝐑 is a genomic 

relationship matrix of the animals in subset 1 using the first method of VanRaden (2008) and 

𝐞 is assumed to follow 𝑁(𝟎, 𝐈𝜎𝑒
2). 

 

Initial analyses with a first order random regression on the estimated CG effects did not yield 

meaningful results, while the variance in YD appeared to be largest at intermediate CG values, 

supporting a random regression on the squared CG effects. To evaluate the fit of the genomic 

reaction norm model to the data, a reduced model without considering the regression on 

squared CG effects was compared using a likelihood ratio test (LRT) based on the LRT statistic 

D = -2 * log(likelihood) for the reduced model + 2 * log(likelihood) for the alternative model. For 

convenience, both models were considered being significantly different if the test statistic was 

above the 5% critical value (2.71) from a mixture 𝜒2 distribution with 0 and 1 degrees of 

freedom (Self and Liang, 1987). The genetic variance 𝜎𝑞
2 for a specific environment 𝑞 (CG 

effect) was calculated as 𝜎𝑞
2 =  𝜎𝛽0

2 +  𝜎𝛽1
2 𝑞2 + 2𝜎𝛽0𝛽1𝑞. The heritability (ℎ𝑞

2) of a specific 

environment 𝑞 was calculated as ℎ𝑞 
2 =  

𝜎𝑞
2

𝜎𝑞
2+ 𝜎𝑒

2   
.  

 

 

Calculation of SNP specific weights 

Allowing for heterogeneous SNP variances (HET), SNP specific weights for each SNP k for 

each coefficient i of the reaction norm model (i.e. intercept 𝛽0 and the quadratic regression 

coefficient 𝛽1) were calculated as 

 

𝐷𝑘𝑖
=  √2𝑝𝑘(1 − 𝑝𝑘)�̂�𝑘𝑖

 

 

where 𝐷𝑘𝑖
 is diagonal element i of diagonal matrix 𝐃𝒌 that stores the weights for SNP k, 𝑝𝑘 is 

the allele frequency of SNP k, and �̂�𝑘 is the estimated effect of SNP k for coefficient i. The 

SNP effects �̂�𝑘 for intercept and quadratic regression coefficient were obtained by backsolving 

based on the GEBV for 𝛽0 and 𝛽1 obtained from the genomic reaction norm model. SNP effects 

were calculated following the approach described in Bouwman et al. (2017) implemented in 

the companion program compute_SNP_effects of calc_grm (Calus and Vandenplas, 2016). 

 

Analysis subset 2 
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In subset 2, the following SNP-BLUP (VanRaden, 2008) model was applied  

 

𝐲 =  𝟏𝜇 + 𝐙𝛄𝟎 + 𝐐𝐙𝛄𝟏 + 𝐞 

 

where 𝐲 is the vector of YD of animals in the training set of each cross validation run, 𝜇 is an 

overall mean, 𝐙 is a matrix including the centered genotypes for each SNP, 𝐐 is a diagonal 

matrix storing the squared estimated CG effects (environmental descriptor) for each animal, 

𝛄𝟎 and 𝛄𝟏 are vectors of estimated SNP effects for random intercept and quadradic regression 

coefficient, respectively, and 𝐞 is a random residual term. For HET the following (co)variance 

matrix is used for SNP k: 

𝑉𝑎𝑟([𝛄𝟎, 𝛄𝟏]′) =  𝐃𝒌 ∗ 𝑮 ∗ 𝐃𝒌 

where  is the estimated genetic (co)variance matrix between intercept and quadratic 

regression coefficient obtained from the reaction norm model in the analysis of subset 1. For 

HOM, homogeneous SNP variances for intercept and quadratic regression coefficient are 

provided by 𝜎𝑔
2/2 ∑ 𝑝𝑘(1 − 𝑝), where 𝜎𝑔

2 is the genetic variance for either intercept or quadratic 

regression coefficient estimated in subset 1. The GEBV for validation animals were calculated 

as 𝐆𝐄𝐁𝐕 =  𝟏�̂� +  𝐙�̂�𝟎 + 𝐙𝐐�̂�𝟏 . 

The accuracies of GEBV for animals in the validation set were obtained as the correlation 

coefficient between the observed YD and predicted GEBV divided by the square root of 

heritability: �̂� = 𝑐𝑜𝑟(𝐘𝐃, 𝐆𝐄𝐁𝐕)/√ℎ2. In order to calculate accuracies for different 

environments, three environments (env1 – env3) have been defined by the <20% quantile, 

>=20% and <=80% quantile, and >80% quantile of the environmental descriptor (CG effect). 

The number of validation animals per environment for each cross validation is shown in Table 

4. The bias of GEBV (inflation) was evaluated by the coefficient of the regression of YD on 

GEBV.  

 

 

Results 

 

Descriptive statistics 

Summary statistics for age at slaughter for all phenotyped and genotyped animals with 

phenotypes are presented in Table 1. The arithmetic means for age at slaughter for all 

phenotyped and genotyped animals with phenotypes were 745.6 days (SD 145) and 746.7 

days (SD 123.5), respectively, which is in concordance with Berry et al. (2017).  
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The population structure of the genotyped animals evaluated by a PCA is illustrated in Figure 

2. The majority of animals (n=12,310) are classified as crossbred animals in the pedigree. The 

most important breeds regarding contribution to crossbred animals are Limousine, Holstein, 

Charolais and Aberdeen Angus as shown in the density distribution of proportion of genes of 

those breeds for all animals (Figure 3). The average proportion of genes for Limousine, 

Holstein, Charolais and Aberdeen Angus are 0.27 (SD 0.31), 0.26 (SD 0.38), 0.23 (SD 0.29) 

and 0.07 (SD 0.17), respectively. 

The number of clusters in the K-means clustering analysis was set to 12. Table 2 shows the 

number of animals and herds per cluster as well as the average proportion of genes per breed 

within cluster. The number of animals per cluster varied between 242 and 1,847 (mean 1,222, 

SD 603.7) and the number of herds per cluster were in the range of 32 and 323 (mean 314, 

SD 106.9) herds. Different breeds and different genetic lines (sires) within breed are 

associated with different clusters. The structure of clusters is visualised in Figure 4, where 

Holstein animals were associated with cluster 2, 3 and 10 with an average Holstein proportion 

of 0.98, 0.87 and 0.68, respectively. Limousine animals were distributed across several 

clusters, i.e. 1, 7, 5, 0 with average gene proportions of 0.63, 0.49, 0.41, and 0.30 respectively. 

Charolais was mainly associated with clusters 8, 11, 0 and 5 with average gene proportions of 

0.49, 0.48, 0.45, and 0.33. The highest gene proportion of Aberdeen Angus (0.59 and 0.40) 

was found for clusters 6 and 9. Subset 1 consisted of clusters 1, 2, 6 and 8 representing the 

main breeds Limousine, Holstein, Aberdeen Angus and Charolais (Table 2). 

 

LRT and Variance components estimated in the reaction norm model 

The log(likelihood) for the reaction norm model and the reduced model (accounting for 

intercept only) were -23,318.0 and -23,326.7, respectively. The calculated test statistic D is 

17.4, which is higher than the 5% critical value of 2.71 from a mixture 𝜒2 distribution with 0 and 

1 degrees of freedom. The reaction norm model accounting for the environment is considered 

being significantly different from the reduced model.  

 

The estimated genetic variances for the intercept and quadratic regression coefficient in subset 

1 were 780.51 (SE 99.43) and 14.32 (SE 9.39), respectively. The covariance between intercept 

and quadratic regression coefficient was -85.09 (SE 29.37), leading to a genetic correlation of 

-0.80. The estimate for the residual variance was 1,773.5. The heritability for age at slaughter 

across environments (CG) is shown in Figure 5. Dependent on the regression function 

modelled in the reaction norm model, the shape of the curve follows a parabola, with highest 

heritability estimates for intermediate environments, and lowest estimates for extreme 
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environment with either very low or very high CG effects for age at slaughter. The average 

heritability across all CG was 0.264 (SD 0.044). The highest observed heritability was 0.306, 

the lowest 0.134. The average heritability for the 0-20% (env1), 20-80% (env2), and 80-100% 

(env3) quantiles of CG effects were 0.231 (SD 0.035), 0.295 (SD 0.011), and 0.214 (SD 0.037), 

respectively. 

Each 50iest environment along the environmental gradient (CG) has been selected, resulting 

in 21 environments. Figure 6 shows the full genetic correlation matrix between those 

environments. The correlations were between 0.89 and 1. The lowest genetic correlations 

(0.89) were observed between intermediate and extreme environments (CG).  

 

Accuracy and bias of GEBV with HOM and HET 

Table 3 reports accuracy and bias of GEBV of validation animals in the cross validation 

analysis estimated with a genomic reaction norm model for both modelling homogeneous and 

heterogeneous SNP (co)variances across the genome. Here, accuracies were calculated 

across all environments that occur within a CV. Accuracy for HOM ranged between 0.185 and 

0.582 across all cross validation sets. The highest accuracy (0.582) was observed for cross 

validation 2, where the main breeds regarding contributing gene proportion are Holstein and 

Aberdeen Angus. The average accuracy for HOM across all cross validations was 0.317. The 

slope of the regression of YD on GEBV indicate inflation of the GEBV where values greater 

than 1 indicate underestimation of the variance of GEBV and values lower than 1 

overestimation. In all cross validations, an overestimation can be observed, except for CV2, 

where bias was 1.143 (Table 3). For HET, accuracies were in general slightly lower than for 

HOM, except for CV2, where HET accuracy was slightly higher (0.587 for HET and 0.582 for 

HOM, Table 3). The highest accuracy was again achieved for CV2. Similar as for HOM, 

overestimation of GEBV was obtained for HET. For CV2, bias was close to 1 with 1.108. 

 

The accuracy and bias of GEBV were also assessed across the environmental gradient, where 

three different environments (env1-env3) representing the 0-20%, 20-80%, and 80-100% 

quantiles of the CG effects, were defined. Accuracies for HOM and HET follow the same 

pattern across environments (Table 4). For CV1, CV4, CV5 and CV6, highest accuracies were 

observed for env2, representing intermediate environments. For CV2, CV3, and CV7 the 

highest accuracies were observed for animals in env1, representing extreme environments 

with low CG effects for age at slaughter. In general, accuracies were lowest for env3 (except 

for CV2). The highest accuracy across environments has been obtained for CV2 (0.748 for 

HOM in env1). Within HET, accuracies follow a similar pattern as for HOM: accuracy was 
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highest for intermediate environments (CV1, CV4, CV6) and lowest for env3 (CV1, CV3, CV6 

and CV7). Across environments, accuracies for HET and HOM are almost equal for 

intermediate environments (env2, CV1, CV2, CV7). As shown in Table 4, GEBV were less 

biased in env2 (both HOM and HET), however, still over- and underestimation occurred.  

 

 

Discussion 

The objective of this study was to evaluate accuracies of a genomic reaction norm model 

allowing for heterogeneous SNP (co)variances applied to age at slaughter in an Irish dairy and 

beef crossbred population. The trait age at slaughter is of high relevance in terms of efficiency 

on the animal, herd and production system level. Reduction in age at slaughter can help to 

reduce methane emission and thereby contribute to address current environmental challenges 

in livestock production (Cromie, 2019). Age at slaughter is a new trait. Currently, no genetic 

and genomic evaluation for age at slaughter is implemented in Ireland (Cromie, 2019). The 

results in this study exploit large usable phenotypic and genetic variation for age at slaughter 

(Table 1). Average heritability across the environmental gradient was 0.264. This is in 

agreement with results presented by Berry et al. (2017), who estimated heritabilities of 0.26 

and 0.23 based on a 2-step and 1-step linear mixed model, respectively.  

Without genomic information, the best criteria to select young animals for replacement for age 

at slaughter will be the parent average (PA) estimated breeding value. Following Dekkers 

(1992) and Bijma (2012) we have derived the expected theoretical accuracy of selection based 

on the PA (Appendix), assuming a heritability of 0.264 (average across environments) and 

considering 2 offspring per dam as well as either 10, 100 and 1,000 offspring per sire. The 

accuracy of selection of an average animal in the Irish dairy and crossbred data set is expected 

to be 0.14 (for 10 offspring per sire) and 0.23 for offspring of a sire with 1,000 offspring (Table 

1 in Appendix). The accuracies of GEBV obtained in this study were between 0.176 and 0.587 

across all CV and independent of environment (Table 3) and between 0.212 and 0.548 for 

intermediate environments (Table 4). Comparing accuracies of selection based on PA and 

GEBV (Tables 3 and 4), shows a clear benefit of using genomic information for age at 

slaughter.  

 

When GxE exists, selection of robust and resilient animals with flat reaction norms across the 

environmental gradient is desirable to ensure good quality performance across different 

environments (Strandberg et al., 2000). Estimated genetic parameters in subset 1 suggest the 
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existence of GxE interactions for age at slaughter to some extent. The average heritability of 

extreme environments, i.e. low and high CG effects for age at slaughter, is lower (0.231 for 

env1 and 0.214 for env3) compared to intermediate environments (0.295 for env2). Accuracies 

of GEBV were higher for intermediate environments (CV1, CV4, CV5, and CV6). In general, 

this would be expected given the higher average heritability of age at slaughter for env2 

compared to extreme environments and most of the data was observed for intermediate 

environments (Table 4).The lowest genetic correlations between intermediate environments 

and extreme environments were 0.89 indicating that estimated breeding values of animals may 

be different in changing environments. Nevertheless, this range of observed genetic 

correlations between environments, i.e. all being 0.89 or greater, indicates that a single 

breeding program is sufficient to serve the range of environments included in this data (Mulder 

et al., 2006). 

 

In this study, SNP effects for intercept and quadratic regression coefficient were derived based 

on a genomic reaction norm model in subset 1, assuming equal (co)variances for each SNP 

across the genome. Alternatives, as proposed by Wang et al. (2012) with the single-step 

GWAS, are to estimate SNP effects by an iterative approach, where equal (co)variances are 

assumed for all SNP in the first iteration and every next iteration uses SNP variances estimated 

in the previous iteration. The limitation of this approach is, that SNP effects may become very 

large leading to inflated SNP variances. In addition, there is no formal criteria for convergence. 

Zhang et al. (2016) use a maximum of 10 iterations. Recently, Zhang et al. (2019) applied 

single-step GWAS to evaluate genomic regions associated with the intercept and slope of a 

reaction norm model for fertility traits in Danish Holstein. To avoid very large SNP effects, they 

have used only three iterations following suggestions by Wu et al. (2018). Bayesian 

approaches to derive SNP effects to upweight SNP in a following GBLUP or single-step 

SNPBLUP analysis, have been suggested by Karaman et al. (2018), Su et al. (2018), and 

Karaman et al. (2020). However, no such Bayesian implementation is available for genomic 

reaction norm models. The analysis protocol allowing for heterogeneous SNP (co)variances 

developed in this study is based on readily available software allowing quick and large scale 

implementations.  

 

The current approach has been previously tested in simulated data (Gredler-Grandl and Calus 

(2020) and Gredler-Grandl (2021) resulting in a small increase in accuracy of GEBV with 

models allowing for heterogeneous SNP (co)variances. An increase in accuracy between 0.01 

and 0.03 has been observed when applied in genomic multi-trait and reaction norm models. 
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However, in the current study, when applied to a real data set, no advantage in accuracy of 

GEBV estimated with HET was observed. The accuracies of HET are either slightly lower or 

equal to HOM (Tables 3 and 4). Based on this result, we hypothesize that the genetic 

architecture of age at slaughter is highly polygenic with no really big QTL, therefore leaving 

little advantage of the proposed method. Until now, age at slaughter has not undergone strong 

selection, but indirect selection by selection for other correlated traits may have occurred, 

which may have caused fixation of any big QTL previously. Furthermore, the heterogeneous 

nature of the data set with different breeds and crossbred animals may make it difficult to take 

advantage of the proposed method. If QTL affecting age at slaughter exist, but are different or 

have different effects across breeds, polygenicity will be increased across breeds. Depending 

on the genetic architecture, the accuracy of GEBV for other traits may still benefit from 

modelling heterogeneous SNP (co)variances.  

 

 

Conclusions 

The genetic analysis of age at slaughter in an Irish dairy and beef crossbred population reveals 

large genetic variation for this trait. Genomic reaction models resulted in higher accuracies for 

young selection candidates compared to the expected accuracy of PA breeding values without 

genomic information. Thus, using genomic information has the potential to considerably 

increase the rate of genetic gain for age at slaughter, and thereby to increase efficiency and 

reduce environmental impact of beef cattle production. The genetic parameters obtained from 

the genomic reaction norm model support the existence of GxE for age at slaughter to some 

extent, indicating that breeding values of an animal may change along the environmental 

gradient. Compared to homogeneous SNP (co)variances, the genomic reaction norm model 

allowing for heterogeneous SNP (co)variances across the genome did not result in higher 

accuracy of GEBV.  
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Table 1. Descriptive statistics for age at slaughter for all phenotyped animals (age all) and 
genotyped animals (age geno), yield deviations (YD), and contemporary group effects of the 
genotyped animals on the original (CG orig) and standardized scale (CG stand)  
 

Item N mean SD MIN MAX 

Age all (d) 2,845,504 745.6 145.0 426 1095 
Age geno (d) 14,665 746.7 123.5 427 1094 
YD (d) 14,665 -3.5 52.0 -278.7 339.4 
CG orig (d) 3,146 100.9 92.9 -195.1 441.4 
CG stand 3,146 0 1 -3.2 3.8 

 
 
  

Annex 1



                                                                                                                                                              
 

GenTORE – GA n° 727213 
D4.3 – Paper on genomic prediction of efficiency in multiple admixed breeds 

 

Table 2. The number of animals and herds per cluster and the average breed proportion per 
cluster 
 

Cluster N 
animals 

N  
herds 

HO1 LM1 CH1 AA1 HF1 BB1 

0 1,717 143 0.039 0.303 0.446 0.027 0.020 0.021 
1 1,636 218 0.042 0.625 0.116 0.025 0.022 0.021 
2 1,720 156 0.979 0.002 0.002 0.001 0.001 0.000 
3 1,407 300 0.873 0.038 0.001 0.044 0.020 0.003 
4 559 118 0.125 0.234 0.102 0.082 0.175 0.111 
5 1,847 41 0.045 0.406 0.334 0.023 0.024 0.035 
6 722 106 0.066 0.102 0.074 0.587 0.050 0.017 
7 1,574 323 0.074 0.486 0.092 0.055 0.039 0.040 
8 1,248 271 0.067 0.131 0.488 0.072 0.042 0.034 
9 242 32 0.291 0.099 0.087 0.399 0.048 0.011 
10 274 45 0.684 0.044 0.053 0.100 0.059 0.023 
11 1,719 288 0.043 0.231 0.484 0.034 0.029 0.024 

1 HO=Holstein, LM = Limousine, CH=Charolais, AA = Aberdeen Angus, HF = Hereford, BB = Belgian 
Blue 
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Table 3 Number of animals in the training (Train) and validation (Val) sets, accuracy and bias 
of GEBV estimated with genomic reaction norm models allowing for homogeneous (HOM) and 
heterogeneous (HET) SNP (co)variances across the genome 
 

 CV1 CV2 CV3 CV4 CV5 CV6 CV7 

Number of animals in training and validation set 

Train 7,623 8,826 7,767 7,495 8,782 7,934 7,625 
Val 1,719 516 1,574 1,847 559 1,407 1,717 
Cluster 
for Val 

11 9+10 7 5 4 3 0 

Accuracy of GEBV1 

HOM 0.286 0.582 0.185 0.305 0.227 0.315 0.320 
HET 0.267 0.587 0.176 0.282 0.183 0.301 0.301 

Bias of GEBV1 

HOM 0.664 1.143 0.411 0.581 0.460 0.648 0.719 
HET 0.584 1.108 0.356 0.505 0.334 0.565 0.644 

1 Accuracy and bias have been calculated across all environments that occur within the CV data set 
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Table 4. Number of animals in the validation set per environment (env1-env3), accuracy and 
bias of GEBV estimated for different environments (env1-env3) with genomic reaction norm 
models allowing for homogeneous (HOM) and heterogeneous SNP (co)variances across the 
genome  
 

 CV1 CV2 CV3 CV4 CV5 CV6 CV7 

Number of animals in the validation set for each environment 

env1 290 131 328 340 127 311 241 
env2 1,015 354 964 1,158 336 882 989 
env3 414 31 282 349 96 214 487 

Accuracy of GEBV HOM 

env1 0.357 0.748 0.318 0.285 0.234 0.278 0.452 
env2 0.363 0.539 0.212 0.322 0.262 0.379 0.375 
env3 0.182 0.590 0.093 0.308 0.240 0.013 0.224 

Accuracy of GEBV HET 

env1 0.266 0.745 0.328 0.245 0.117 0.278 0.480 
env2 0.377 0.548 0.221 0.304 0.239 0.375 0.384 
env3 0.140 0.644 0.068 0.282 0.292 0.003 0.143 

Bias of GEBV HOM 

env1 0.507 1.210 0.565 0.333 0.479 0.411 0.905 
env2 1.303 1.308 0.696 0.805 0.634 1.042 1.148 
env3 0.242 0.575 0.129 0.450 0.294 0.019 0.316 

Bias of GEBV HET 

env1 0.352 1.144 0.548 0.269 0.208 0.375 0.912 
env2 1.297 1.293 0.701 0.726 0.581 0.980 1.142 
env3 0.173 0.584 0.080 0.379 0.297 0.004 0.188 
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Figure 1. Frequency distribution of standardized CG effects 
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Figure 2. Population structure of genotyped animals (n=14,665) as determined by a PCA 
on the genomic relationship matrix. Yellow dots represent cross bred animals.  
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Figure 3. Density plot of gene proportion determined by pedigree information of the 
main breeds Holstein (HO), Limousine (LM), Charolais (CH) and Aberdeen Angus (AA) 
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Figure 4. Herd structure as evaluated by a PCA on the genomic relationship matrix of 
the herds. Different colors represent the 12 clusters defined in the K-means clustering 
approach.  
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Figure 5. Heritability estimated with the genomic reaction norm model in subset 1 
across different environments (CG effects) 
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Figure 6: Genetic correlation matrix between environments in subset 1. Genetic 
correlation was calculated between each 50th environment. Environment is presented 
as the squared values of CG effects.  
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Appendix 
 
If no genomic information is available, in most cases the parent average (PA) estimated 
breeding value (EBV) will be the best available criteria to select young animals for the trait age 
at slaughter. Here we derive the accuracy of selection based on PA, assuming a heritability of 
0.264, reflecting an average environment, and considering that the EBV is based on 2 offspring 
for dams, and on 10, 100 or 1000 offspring for sires. Number of offspring being 2 for dams and 
10 for sires reflect average values observed in the data. We computed equilibrium accuracies 
for PA (𝜌𝑃𝐴,∞) (Dekkers, 1992; Bijma 2012), considering that the population is under selection. 

For this, we used formulas 8c, 9a, 9b and 10 in Bijma (2012). We assumed selected 
proportions of 0.2 for males and 0.75 for females. In reality the proportion of males selected in 
the population may be lower, but the derived selection intensity at best only partly applies to 
age at slaughter, either through direct selection for the trait or through indirect selection 
targeting correlated breeding goal traits. It should be noted that especially more intense 
selection in the males will reduce the resulting 𝜌𝑃𝐴,∞. With these assumed parameters, the 

contribution of the female to 𝜌𝑃𝐴,∞ was negligible, and therefore omitted from the calculations. 

The results are summarized in the Table below, and indicate that 𝜌𝑃𝐴,∞ is expected to be 0.14 

for the average individual in the data analysed, and at best 0.23 for the offspring of a sire with 
an EBV of high accuracy (i.e. based on 1000 offspring). 
 
 
Table 1. Description and values of all input and output parameters. 
 

Symbol1 Description 𝒏𝒎 = 𝟏𝟎 𝒏𝒎 = 𝟏𝟎𝟎 𝒏𝒎 = 𝟏𝟎𝟎𝟎 

𝑝𝑚 Selected proportion males 0.2 0.2 0.2 

𝑖𝑚 Selection intensity males 1.400 1.400 1.400 

𝑘𝑚 Proportional reduction variance in 
males 

0.781 0.781 0.781 

𝑛𝑚 Number of offspring per male 10 100 1000 

𝜌𝑚,0 Accuracy male (unselected 
population) 0.644 0.936 0.993 

𝜌𝑚,0
2  Reliability male (unselected 

population) 0.414 0.876 0.986 

𝜌𝑃𝐴,0 Accuracy PA (unselected population) 0.322 0.468 0.497 

𝜌𝑃𝐴,0
2  Reliability PA (unselected population) 0.104 0.219 0.247 

𝜌𝑚,∞ Accuracy male (selected population) 0.591 0.918 0.991 

𝜌𝑚,∞
2  Reliability male (selected population) 0.349 0.843 0.982 

𝝆𝑷𝑨,∞ Accuracy PA (selected population) 0.138 0.215 0.232 

𝜌𝑃𝐴,∞
2  Reliability PA (selected population) 0.019 0.046 0.054 

1Partly following notation in Bijma (2012). Subscript “0” denotes accuracies in an unselected 
population, while subscript “∞” denotes equilibrium accuracies in a population under selection. 
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Genomic management Tools to Optimise 

Resilience and Efficiency

 WP 4: Genomic indices for multi-breed selection in 
different environments

● Task 4.2: Genomic predictions across multiple 
environments

2
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Genomic GxE models

 Multi-trait approach:

● Environments are divided in limited number of 
groups

● Groups are considered different traits

 Reaction norm model:

● Environment is defined with a continuous variable

● Breeding values modelled as function of this variable

 Both can be implemented relying on:

● Genomic relationships (GREML)

● Random regression on SNP genotypes (RR-REML) 

3
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Assumptions SNP (co)variances

 GREML and RR-REML are equivalent

● Homogeneous (co)variance assumed for all SNPs

 Certain regions in genome may harbour QTL 
assumption of equal (co)variances is violated

 Can we model heterogeneous (co)variances?

4
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Model heterogeneous SNP variances 

 Make SNP (co)variances heterogeneous by weighing

● (1) Weights derived from estimated SNP effects

● (2) Re-compute SNP-effects using those weights

 Issue: computing (1) & (2) from the same data may 
inflate large SNP-effects

5
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Proposed solution: split data in two

6

• Estimate SNP-effects 
assuming equal 
(co)variances for all 
SNP

• Calculate SNP specific 
weights within 
environment

• Estimate GEBV using 
the 2nd subset, 
applying weights on 
SNP (co)variance 
matrix within 
environment
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Simulation (1) (QMSim, Sargolzaei and Schenkel, 2009)

7

G -1000 Historical population
N=10,000

G -20                 Bottle neck
N=400

G 0 Last generation HP
N=4,100

G1      Breed A
50m, 2000f

Breed B
50m, 2000f

G 210  Breed A
1000m, 1000f

Breed B
1000m, 1000f

• Random mating and 
selection

• Genome 30 Chr

• 100 cM length

• 1700 markers per Chr

• 150 QTL per Chr

• ~ 51,000 markers

• ~ 4,500 QTL

• 5 replicates
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Simulation of phenotypes

 Phenotypes follow multivariate and reaction norm models

 Input: environmental values, genetic & residual (co)variances

 QTL-effects are simulated for QTLs simulated in QMSim

 TBV: sum QTL and polygenic effect

 Phenotype: TBV*environmental value + polygenic effect + 

residual error

8
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Validation study – bi-variate approach

9

Data set 1
Gen 205 + 206
4000 individuals

2000     2000
Env1      Env2

Data set 2
Training

Gen 207 + 208
4000 individuals

2000     2000
Env1      Env2

Data set 2
validation

Gen 209 + 210
4000 individuals

2000     2000
Env1      Env2
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Validation study – bi-variate approach

10

Data set 1
Gen 205 + 206
4000 individuals

2000     2000
Env1      Env2

 GREML (mtg2)

 Backsolve SNP-effects (calc_grm)
 Calculate weights as:

 2���1 � ����	�


����� �
���

� �����

����� ���
�

⊗ G

� �  � � �� � �
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Validation study – bi-variate approach

11

Data set 2
Training

Gen 207 + 208
4000 individuals

2000     2000
Env1      Env2

Data set 2
validation

Gen 209 + 2010
4000 individuals

2000     2000
Env1      Env2

 SNP-BLUP (hpblup)

 Apply weights (D) on SNP 
(co)variance matrix:

 ���

� 2���1 � ����	�


� �  � � �� � �

��
� � ��

� /2Σ��1 � ��
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Assumed heritability and genetic 

correlation between traits (environments)

12

Trait 1 Trait 2

Trait 1 0.23

Trait 2 0.78 0.30
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Results: Estimated heritability and genetic 

correlation between traits in data set 1

13

Trait 1 Trait 2 Trait 1 Trait 2

Trait 1 0.23 0.218

Trait 2 0.78 0.30 0.762 0.332
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Results: Correlation between estimated 

GBV and TBV within environment

14

Homogeneous
SNP (co)variance 

Heterogeneous
SNP (co)variance

Trait 1 – env1 0.566 0.582

Trait 2 – env2 0.605 0.622
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Results: Correlation between estimated 

GBV and TBV across environments

15

Homogeneous
SNP (co)variance 

Heterogeneous
SNP (co)variance

Trait 1  Trait 2 0.559 0.576

Trait 2 – env2 0.605 0.622

Trait 2  Trait 1 0.556 0.579

Trait 1 – env1 0.566 0.582

• How well can we predict the breeding value of 
individuals in environment 1(2) for environment 2(1)?
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Summary

16

 Analysis protocol to model heterogeneous SNP variances 

developed

 Slight increase in accuracy with heterogeneous SNP variances 

in a multi-variate approach

 Accuracy across and within environment prediction almost 

equally high

 Test next in reaction norm models
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Thank you!
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This project has received funding from the European Union’s Horizon 2020 research and 

innovation program under Grant Agreement No 727213
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Genomic GxE approaches modelling 

heterogeneous SNP variances: applied to 

simulated data 

Virtual Interbull Meeting 2021

Birgit Gredler-Grandl and Mario Calus (WUR)
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Genomic GxE models

 Multi-trait approach and reaction norm model can be 
implemented relying on:

● Genomic relationships (GREML)

● Random regression on SNP genotypes (RR-REML)

 GREML and RR-REML are equivalent

● Homogeneous (co)variance assumed for all SNPs

 Certain regions in genome may harbour QTL 
assumption of equal (co)variances is violated

2
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Genomic GxE models

3

Can we model heterogeneous SNP 

(co)variances and do those models 

improve accuracy of genomic prediction?
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Model heterogeneous SNP variances 

 Make SNP (co)variances heterogeneous by weighing

● (1) Weights derived from estimated SNP effects

● (2) Re-compute SNP-effects using those weights

 Issue: computing (1) & (2) from the same data may 
inflate large SNP-effects

4
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Proposed solution: split data in two

5

• Estimate SNP-effects 
assuming equal 
(co)variances for all 
SNP

• Calculate SNP specific 
weights within 
environment

• Estimate GEBV using 
the 2nd subset, 
applying weights on 
SNP (co)variance 
matrix within 
environment

picture source: freepik.com
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Simulation (1) (QMSim, Sargolzaei and Schenkel, 2009)

6

G -1000 Historical population
N=10,000

G -20                 Bottle neck
N=400

G 0 Last generation HP
N=4,100

G1      Breed A
50m, 2000f

Breed B
50m, 2000f

G 210  Breed A
1000m, 1000f

Breed B
1000m, 1000f

• Random mating and 
selection

• Genome 30 Chr

• 100 cM length

• 1700 markers per Chr

• 150 QTL per Chr

• ~ 51,000 markers

• ~ 4,500 QTL

• 5 replicates
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Simulation of phenotypes

 Phenotypes follow a reaction norm model

 Input: environmental values, genetic & residual (co)variances

 QTL-effects are simulated for QTLs simulated in QMSim

 Phenotype: environmental value * TBV + residual error

7

Gen cov matrix Reaction norm model

b0 b1

b0 0.3

b1 0.05 0.025

Environmental variance 0.5
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Heritability across environments

8
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Reaction norm model – 20 continuous 
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Validation study

9

Data set 1
Gen 205 + 206
4000 individuals

Data set 2
Training

Gen 207 + 208
4000 individuals

Data set 2
validation

Gen 209 + 210
4000 individuals

Individuals in each generation are randomly assigned to 
environments
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Model Data set 1

10

 Reaction norm model (mtg2)

 Backsolve SNP-effects (calc_grm)

 Calculate weights as:

 2���1 � ����	�


�   � � �� � �� ∗ � � �
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Model Data set 2

11

 SNP-BLUP (MiXBLUP)

 Apply weights (D) on SNP (co)variance 
matrix:

 ���

 2���1 � ����	�


 ��� ��, �� ′  ���

G ���


�   � � ��� � ���� � �
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Results: Estimated genetic covariance 

matrix for b0 and b1 in data set 1

12

b0 b1 b0 b1

b0 0.3 0.35

b1 0.05 0.025 0.04 0.031

Annex 3



Results: Correlation between estimated 

GBV and TBV for b0 and b1

13

Homogeneous
SNP (co)variance 

Heterogeneous
SNP (co)variance

b0 0.521 0.551

b1 0.588 0.601
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Application in Irish beef crossbred data set 

 Trait: age at slaughter (Berry et al., 2017)

 14,668 genotyped bulls, steers, heifers 

 HD imputed genotypes (662,011 SNPs)

 Yield deviation as phenotypes

 CG-effects as continuous descriptor of environment 

14
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Age at slaughter in days 

mean = 746.7

sd = 123.5 

min    = 427.0

max   = 1094.0

15
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Breeds: PCA G-Matrix purebred and 

crossbred animals 

163.82%

1
.2

7
%
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How to define sets for analysis?

 K-means clustering 
approach (similar Saatchi 
et al., 2011)

 Distance matrix between 
individuals computed as 
follows:

��  1 �  
�� 

��� · �  

 Apply on herds

 Set up GRM for herds

 Define sets according to 
cluster results 

17
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Summary

 Analysis protocol to model heterogeneous SNP variances 

developed

 Slight increase in accuracy with heterogeneous SNP variances 

in reaction norm models in simulated data

 Currently investigating added value in real data

18
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Thank you!
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This project has received funding from the European Union’s Horizon 2020 research and 

innovation program under Grant Agreement No 727213

Alan Twomey and Donagh Berry
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